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Abstract

The lack of reasoning capabilities in Vision-
Language Models (VLMs) has remained at
the forefront of research discourse. We posit
that this behavior stems from a reporting
bias in their training data. That is, how peo-
ple communicate about visual content, by
default, omits tacit information needed to
supervise some types of reasoning; e.g., “at
the game today!” is a more likely caption
than “a photo of 37 people standing behind
the field.” We investigate the pragmatics
of the data underlying popular VLMs like
OpenCLIP, LLAVA-1.5 and Molmo, and
find that four reasoning skills (spatial, tem-
poral, negation, and counting) are not suf-
ficiently represented. With a set of curated
benchmarks, we demonstrate that: (i) fre-
quency of skill-requiring instances predicts
model performance; (ii) contrary to popular
belief, scaling data size, model size, and to
multiple languages does not result in emer-
gence of these skills; but, promisingly, (iii)
incorporating annotations specifically col-
lected to obtain tacit information is effec-
tive. Our findings highlight the need for
intentional, reasoning-aware data collection
methods, rather than counting on scale for
emergence of reasoning capabilities.

1 Introduction

Research in Vision-Language Models (VLMs)
grapples with a paradox: despite their impressive
performance on standardized benchmarks (Liu
et al., 2024a; Deitke et al., 2024; OpenAl, 2024),
these models often falter on tasks requiring count-
ing (Paiss et al., 2023), spatial reasoning (Liu
et al., 2023; Kamath et al., 2023b) and compo-
sitional reasoning (Ma et al., 2023; Zhao et al,,
2022; Parcalabescu et al., 2022; Yuksekgonul
et al., 2023; Kamath et al., 2024). We hypoth-
esize that these gaps stem from a reporting bias

in vision-language data. Put simply: when dis-
cussing images online, people systematically omit
certain types of information, e.g., spatial preposi-
tions. We leverage long-standing bodies of work
in pragmatics, linguistics, and cognitive science
to identify four types of tacit reasoning systemati-
cally omitted by people: spatial reasoning, count-
ing, negations, and temporal reasoning.

We analyze popular pretraining corpora LAION
(Schuhmann et al., 2022), LLAVA-1.5 (Liu et al.,
2024a) and PixMo (Deitke et al., 2024), and vali-
date that reporting bias occurs when people write
alt-text (as in LAION) or are asked to annotate im-
ages with captions (as in LLAVA-1.5). To inves-
tigate potential correlations between training data
and (a lack of) image-text reasoning skills, we cu-
rate evaluation questions that require these four
types of reasoning. We evaluate a wide variety of
contrastive and generative VLMs on these bench-
marks and show that, in line with our hypothesis,
existing models perform poorly (on average, open-
source models fall 54 points behind human per-
formance) unless they are explicitly trained with
datasets that require such skills.

Crucially, data+model scaling alone is unlikely
to lead to emergent reasoning! — as the human
behaviors underlying the reporting bias do not
change with scale. Extrapolating scaling perfor-
mance on our evaluations suggests, e.g., that CLIP
(Radford et al., 2021) would need to be trained
with an intractable amount of data or number of
model parameters to meet human performance on
our benchmarks. Adding multilingual diversity to
CLIP’s training data by translating non-English
captions in web-scale corpora to English, as in
Nguyen et al. (2024), also does not improve model
performance, showing that the reporting bias is not
specific to the English language.

!'Unlike the success it has shown in perception and recog-
nition tasks (Cherti et al., 2023), which are better represented
naturally in training corpora (Udandarao et al., 2025).



Finally, we study whether such reasoning can be
elicited from annotators when explicitly prompted
to do so. We find that, for the same underly-
ing images sourced from COCO, instructions from
LLAVA and PixMo data collection elicit 2-3 times
more instances of counting and spatial reason-
ing than instructions from COCO. Further, with
carefully-written instructions we present, negation
and temporal reasoning can also be successfully
elicited. The prevalence of reasoning-related in-
formation in training data corresponds with im-
proved reasoning capabilities of the corresponding
models; thus, these results show promise to im-
prove model reasoning via intentional, reasoning-
aware data collection, rather than simply scaling.

Our contributions are: (1) revealing the report-
ing bias in vision-language, validated with three
open-source image-text corpora; (2) re-purposing
benchmarks for VLM reasoning and evaluating
top-performing contrastive and generative VLMs;
(3) revealing that scaling up data, parameters and
multilingual diversity do not result in emergent
reasoning; and (4) showing that reasoning-aware
data collection is possible, and shows promise to
improve model reasoning capabilities.

2 Related Work

Reporting bias is a well-studied phenomenon in
the area of NLP, having presented itself as the
“common sense problem”, e.g., “people murder”
is a more likely bigram than “people breathe” in
text?, leading models trained on this text to in-
correctly believe that the former action is more
likely to occur than the latter (Sap et al., 2019b;
Shwartz et al., 2020). This was overcome with
the introduction of large-scale commonsense cor-
pora (Bosselut et al., 2019; Sap et al., 2019a) to
provide models the lacking information. We study
this phenomenon in vision-language data, tackling
types of reasoning beyond common sense.

In the vision-language domain, Ye et al. (2024)
show that people from different cultures describe
different features of the same image when pro-
vided the same instructions. Nguyen et al. (2024)
further show that by translating non-English cap-
tions to English, VLMs’ zero-shot classification
performance increases. We acknowledge the in-
creased coverage of information by speakers from
different languages, and ask the question: are there

That people breathe is too obvious of a fact to be ex-
pressed in writing.

types of information omitted by everyone?

Several recent works have studied various fail-
ure cases of VLM reasoning (Ma et al., 2023; Di-
wan et al., 2022; Zhao et al., 2022; Kamath et al.,
2023b). In response, other work focuses on im-
proving the quality of the training data, by re-
captioning the images (Nguyen et al., 2023; Lai
et al., 2024; Betker et al.) and/or collecting propri-
etary data (OpenAl, 2024). We investigate a pos-
sible cause behind these failure cases, and study
open-source datasets to determine whether anno-
tators require specific instructions to include data
otherwise omitted due to reporting bias.

Cherti et al. (2023) show that the performance
of contrastive VLMs improves across several tasks
with an increase in scale of model and training
data size. However, this has shown to not be the
case for reasoning tasks (Al-Tahan et al., 2024).
In contrast, we investigate a reason why this be-
havior occurs. Further, our benchmarks target
specific types of reasoning, and contain primar-
ily real-world images. Additionally, we study both
contrastive and generative VLMs.

3 Reporting Bias in Vision-Language
Reasoning

While several recent vision-language benchmarks
have exposed surprising failure modes of powerful
VLMs in various reasoning tasks (Thrush et al.,
2022; Kamath et al., 2023b; Zhao et al., 2022;
Ma et al., 2023), each of these takes a different
stance on the cause of the issue, and thus, its so-
Iution. Some Yuksekgonul et al. (2023); Hsieh
et al. (2023); Doveh et al. (2023a,b) claim that
the failure arises from over-reliance of the image-
text pretraining task on batch size to learn de-
tailed embeddings with the contrastive loss, and
thus try to improve model compositional reason-
ing performance by introducing hard negatives to
the batch. Others Zeng et al. (2021) state that
image-level captions are insufficient to teach the
model fine-grained understanding, introducing hi-
erarchical losses based on region captions. How-
ever, limited work to date studies the structure of
the training data.

No matter how large our corpora become, they
are sourced from captions written largely by hu-
mans. As such, they exhibit the natural patterns
and idiosyncracies of how humans understand and
describe images. In this section, we leverage long-
standing theories from linguistics, pragmatics, and



cognitive science to arrive at hypotheses of report-
ing bias; we identify what is under-represented or
“missing” in web-scale corpora. We then test our
accuracy by investigating the training datasets of
open-source contrastive and generative VLMs.

3.1 Theory-based Hypotheses of Omitted
Types of Reasoning

When people communicate, they do not do so in
a vacuum. Cognitive semantics points out people
take cues from a variety of sources such as intents,
perspectives, and topic of discussion to shape our
communication intent (Langacker, 2015; Talmy,
1972). We use specific words, e.g., adverbs, ad-
jectives, and prepositions, to be as expressive as
required by the context of the discussion. More-
over, Pragmatics tells us that we are organized in
how we achieve this: we abide by a tacit set of co-
operative principles that is expected in communi-
cation (Grice, 1975; Goodman and Frank, 2016).
These topics have been investigated extensively
by various efforts in linguistics, cognitive science,
and child language acquisition, inter alia.

We posit that such principles of communication
can help explain the reporting bias we observe in
the data. In writing captions, we produce text that
best communicates what we observe. Thus, we
expect captions to be subject to the same commu-
nicative principles that guide much of our utter-
ances. At the same time, however, caption data
is produced in a restricted setting that lacks com-
municative context that would produce the desired
expressiveness. Without knowledge like the topic
of discussion and limited understanding of who
the caption consumers will be, the caption writ-
ers have only basic principles and common knowl-
edge to guide their writing. As a result, the cap-
tions lack the expressive cues necessary to train
vision-language models to count, to use negations,
and to do spatial and temporal reasoning.

People tend to omit spatial and temporal
language. Spatial language such as “left of”,
“above” or “below” and temporal prepositions
such as “before” or “after” are central to enabling
spatial and temporal reasoning respectively. How-
ever, unless explicitly directed, people may not
naturally produce such language in captioning.
Pragmatic studies in conversational maxims,
known as Gricean Maxims (Grice, 1975), suggest
that what information is revealed and how much
is revealed is counter-weighed by the expectation

to be direct, to be concise and not to misdirect
in communication. For example, maxims suggest
that even if “a cat left of a dog” is a logically ac-
curate description of an image, a person might opt
for “a cat and a dog” because “left of” assigns un-
due importance to one over the other. Expressive
as it may be, choosing the former caption when
there is no explicit reason to do so would be de-
ceitful (Maxim of Quality) or would impose a per-
spective that cannot be justified: whether it is the
left of the viewer of the image, or of the subject in
the image (Maxim of Manner).

In the same way, given an image of a boy throw-
ing a ball, writing “and after, the ball will fall”
would allow for temporal reasoning for a model,
but such captions are likely to be avoided because
they are too obvious (Maxim of Quantity) or due
to insufficient knowledge or evidence about the
described event (Maxim of Quality).

Even when spatial preposition use may be mer-
ited, studies in cognitive linguistics suggest that
captioning may be limited by the existence of de-
fault relationships, which we only overlook when
the situation calls for it (Talmy, 1972). For ex-
ample, when grounding one object (a Figure) with
respect to another (a Ground), humans will natu-
rally choose the smaller and easier to move entity
as the Figure (e.g., “a poster above a bed” is more
likely than “a bed under a poster”). If they are
equally sized and movable, we will disprefer the
use of spatial language without ulterior reasons.

Such ulterior reasons or perspectives, as theo-
ries in linguistics suggest, are provided by dis-
course mechanisms like the Question under Dis-
cussion (QUD) — the implicit or explicitly stated
question being addressed in a discourse (Von Stut-
terheim and Klein, 1989). Something as simple as
knowing that the image being captioned is a shot
of someone’s newly adopted cat (given the picture
of a dog and a cat) would provide perspectives on
how to frame a caption: what to (de)emphasize,
what to focus on, or simply, what to talk about.
This is not a natural artifact of a restricted annota-
tion setting. Specific prompting (discussed in Sec-
tion 4) such as “focus on the cat” or “cat was just
adopted” would be necessary to provide an action-
able QUD to trigger the temporal or spatial lan-
guage we want represented in the data.

People tend to omit counting. Why people may
omit object counts in image captions is explained
by the expectation that a speaker should maximize



the information conveyed while keeping the state-
ment brief (Maxim of Quantity; Rational Speech
Act (Frank and Goodman, 2012; Goodman and
Frank, 2016)). The informational value added by
“six cats” compared to “a group of cats” is negligi-
ble without further context, while requiring more
effort on the speaker’s part (counting the objects).
Moreover, since there are very few contexts in
which the listener cares whether there were ex-
actly “six cats” compared to “a group of cats”, i.e.,
it is rarely the QUD, there is no need for the writer
to assume it (Maxim of Relevance).

People tend to omit negations. Intuitively,
there is no rational reason for a person to write
“there are no parrots” given a picture of a dog and
a cat without further context. Much like counting,
it would provide more information than necessary
to describe the image (Maxim of Quantity; Ratio-
nal Speech Act) and assign importance when none
is merited (Maxim of Quality). Additionally, con-
cepts of sentence processing related to psycholin-
guistics and child language acquisition (Tian and
Breheny, 2016; Pea, 1978) suggest that negations
are more costly and slower to process than positive
statements, and are thus not preferred.

3.2 Testing Hypotheses in Open-Source
Image-Text Corpora

In this section, we estimate the frequency of
the aforementioned types of reasoning in popu-
lar open-source image-text corpora, to test our
hypothesis that they occur rarely. We study the
training data for OpenCLIP (Cherti et al., 2023),
LLAVA-1.5 (Liu et al., 2024a) and Molmo (Deitke
et al., 2024). Where OpenCLIP is only trained
on LAION (Schuhmann et al., 2022), LLAVA-
1.5 and Molmo are additionally trained on open-
source academic datasets. We combine the text
from all constituent datasets to run this study, tak-
ing sampling rates into account as well.

To perform this study, we list keywords corre-
sponding to each type of reasoning, e.g., to study
the prevalence of spatial language, we search for
the keyword “right of” (among others, c.f. Ap-
pendix). While this includes false positives (“right
of way”), it serves as a loose upper bound of the
prevalence of the spatial relation in the dataset.
For each of these keywords, we perform a string
search in the listed corpora and list the percentage
occurrence of the strings, shown in Table 1.

We then sample 100 data points corresponding

to each type of reasoning in each corpus and man-
ually calculate the number of data points in which
the reasoning is truly represented and visible in the
image, i.e., the true positive rate. We then calcu-
late a rough estimate of the true number of occur-
rences of that type of reasoning in the corpus (Es-
timated True Occurrence in Table 1). Examples
of data points contain keywords and do or do not
operationalize reasoning are shown in Figure 1.
As seen in Table 1, the types of reasoning we
study are indeed infrequent in the corpora, verify-
ing our hypotheses from Section 3.1. To put these
numbers in context, the word “blue” alone appears
in 2% of LAION captions, and tends to be clearly
visible in the image (e.g., “a pair of blue shoes”).

4 The Effect of Annotator Instructions
on Reporting Bias

4.1 Existing Datasets

To determine the effect of annotator instructions,
we first study a dataset where there were no anno-
tator instructions provided at all: LAION (Schuh-
mann et al., 2022), which was scraped from alt-
text fields of images on the internet. We see from
Table 1 that LAION has low representation across
all four types of reasoning we study.

We next look at COCQO’s (Chen et al., 2015)
crowdsourced captions, where annotators were
given no specific prompting that would engage
them in reasoning. In fact, they were explicitly
instructed to “not describe things that might have
happened in the future or past”. Accordingly, we
observe the effect of the instructions leading to an
even lower occurrence of temporal reasoning in
COCO as compared to the non-existent instruc-
tions of LAION. Interestingly, however, we see
that the prevalence of spatial language and count-
ing in COCO is higher than that of LAION. Hav-
ing temporal reasoning restricted, annotators may
have turned to focus more closely on describing
the objects in the image.

For LLAVA-1.5 (Liu et al., 2024a) (pretrain-
ing and finetuning data, combined), the instruc-
tions required discussion of “object counts” and
“relative positions between objects”, among other
non-reasoning-related instructions. This leads to
higher occurrences of both counting and spatial
reasoning than in COCO. However, it is worth
pointing out that their estimated true occurrences
are not higher than that of COCO. This may be
explained by LLAVA’s use of GPT4 as annotator



Spatial Counting Negation Temporal
Data Oceurr. Est. True Oceurr Est. True Oceurr. Est. True Oceurr Est. True
Occurr. Occurr. Occurr. Occurr.
LAION-2B 0.3 0.1 8.8 1.7 0.8 0.1 0.9 0.2
COCO 3.7 3.7 10.8 104 0.2 0.1 0.2 0.1
LLAVA-1.5 (train) 5.8 4.7 12.4 6.0 5.2 1.4 1.7 0.6
Molmo (train) 33 2.2 28.8 16.8 6.0 3.2 2.9 0.3

Table 1: Percentage Occurrences and Estimated True Occurrences of reasoning-related keywords in popular open-
source image-text corpora and training datasets of open-source VLMs.
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Figure 1: Examples from LAION-2B of data points that contain reasoning-related keywords that do and do not

operationalize the reasoning capability itself.

for instruction tuning data. Our analysis shows
that many of the false positives are in fact spurious
descriptions that use counts and spatial language
(e.g., a “left of” that is actually a ’right of”), which
is consistent with GPT4’s weaknesses in reason-
ing. Had human annotators been employed, we
expect to have observed higher true occurrences
of counting and spatial language.

Finally, for Molmo’s (Deitke et al., 2024) pre-
training data, the annotators were instructed to
discuss “objects and their counts” and “posi-
tions of the objects”, among other non-reasoning-
related instructions. Molmo’s training data in-
cludes PixMo as well as other academic datasets,
e.g. TallyQA (Acharya et al., 2019) and VQAv2
(Goyal et al., 2017). As seen in Table 1, specific
instructions for counting and spatial leads to in-
creased prevalence of spatial and counting reason-
ing. Without specific instructions, negations and
temporal remaining remain low, as in LLAVA and
LAION. It is important to note that there is ad-
ditional data in PixMo to assist models with spa-
tial reasoning and counting that is in the form of

bounding box coordinates, and as such is not in-
cluded in the above occurrence estimates.

4.2 Controlled Study

From these observations, we hypothesize that re-
porting bias occurs unless annotators are specifi-
cally prompted to include each type of otherwise-
omitted information. To test this, we carry out
a controlled study where annotators are given a
fixed set of 100 images randomly sampled from
COCO and requested to caption them. We provide
them with one of four sets of annotator instruc-
tions: the original COCO captioning instruction,
the LLAVA-1.5 captioning instruction, the PixMo
captioning instruction, and instructions we write.
We re-format the instructions slightly (e.g., PixMo
captions were collected via audio, not text), but we
retain the exact wording of what annotators were
requested to include and not include in the cap-
tions. In our own instructions, we ask specifically
for all four types of reasoning we study. All sets
of instructions are provided in the Appendix.



We use Prolific? to collect participants for the
study. They were asked to write a caption of
at least 8 words (the minimum caption length in
COCO), but were encouraged to make the cap-
tions as long as needed to include the requested
information (which varied based on the instruc-
tion set). By not constraining the caption length,
we mirror the tendency of people to communicate
concisely (Maxim of Quantity). Annotators were
paid $15 per hour of estimated work, with a bonus
if they spent longer on the task. This allowed us
to simulate the concise nature of communication
(the annotators did not know they would be paid
additionally) while paying annotators fairly.

We then check the 100 written captions for per-
centage occurrences as in Section 3.2, manually
calculating the true positive rate. The results are
shown in Table 2. When annotators are not asked
to include anything specific, as in COCO, they
do tend to use some spatial- and counting-related
words, but no negation- or temporal-related words.
Adding requests for spatial and counting reason-
ing, as in LLAVA-1.5 and PixMo, significantly in-
creases the occurrence of words related to those
types of reasoning, but not to temporal relations or
negations. Thus, it is critical to be intentional with
annotator instructions, if representation of various
types of reasoning is desired. By specifically in-
structing all four phenomena, as in our instruc-
tions, we see that the prevalence of all four types of
reasoning increases compared to COCO, showing
that all types of reasoning can be elicited from an-
notators, if they are explicitly asked for the same.
In terms of our aforementioned linguistics stud-
ies, by making the Question Under Discussion ex-
plicit, we are able to elicit the desired information.

We perform an additional study to determine
whether forcing increased caption length (as in
dense annotation schema, e.g., Deitke et al. (2024)
requiring annotators to speak about the image for
a full minute) yields reasoning-related information
without the need for specific instructions. We find
that it increases the occurrence of the types of rea-
soning people were already predisposed to in the
original COCO study, but not of the other types of
reasoning. Details are in the Appendix.

We will see in Section 6 that the occurrence of
reasoning-related data in training predicts model
performance on that type of reasoning. As such,
our study makes it clear that annotator instructions

*https://www.prolific.com/ [accessed 2/2025]

Instructions  Spatial Counting Negation Temporal
COCO 8 23 2 2
LLAVA-1.5 17 38 3 0
PixMo 21 43 12 1
Ours 14 39 52 44

Table 2: Percentage True Occurrences (manually cal-
culated) of reasoning-related keywords in each set of
100 captions collected with different instructions for
the controlled study.

are the key to overcoming reporting bias and im-
proving model reasoning capabilities.

5 Benchmarks

In this section we discuss the benchmarks we use
to evaluate models on our four recognized phe-
nomena. In several cases, we modify existing
benchmarks to suit our needs. All benchmarks are
multiple-choice caption options given an image,
as shown in Figure 2. In the case of contrastive
VLMs, e.g., CLIP, they are evaluated on image-
text matching; in the case of generative VLMs,
e.g., Molmo, they are evaluated in a multiple-
choice QA setting (but for counting, as discussed
below). These two are not comparable to each
other, as only the latter has access to all options
at once; however, they are both the most favorable
settings for each type of model, allowing us to bet-
ter estimate model capability.

Spatial reasoning. To evaluate spatial reason-
ing, we take the What’sUp benchmark from Ka-
math et al. (2023b). We use only Subset A of
What’sUp, targeting four spatial relations: on, un-
der, left of and right of. This data consists of an
image of two basic household objects in a spatial
relation to each other, with no distractors. It is per-
fectly balanced between the four possible preposi-
tions and consists of 412 data points.

Counting. To evaluate counting, we take Count-
Bench from Paiss et al. (2023). Originally con-
sisting of an image with a caption directly from
LAION containing some count of objects in the
image (e.g., “background photo of three light
bulbs™), we convert this dataset into the image-
text matching format by manually reducing each
caption to <count><objects> (e.g., “3 light bulbs™)
and adding alternate captions for each other count
within 2—-10. This has the added advantage of dis-
allowing cheating by models who have seen the


https://www.prolific.com/
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(A) a dog before catching a the number only, from 2-10.

frisbee
(B) a dog after catching a 2
frisbee

Figure 2: Examples from our four benchmarks for contrastive and generative evaluations. The generative evalua-
tion is in MCQ format but for counting, for which a free form output with a given range yielded higher scores.

exact image-text pair from CountBench in LAION
before. For generative VLMs, we find that all
models we evaluate perform better when allowed
to answer the question directly with a number
compared to the MCQ format, and thus choose the
former format for this task alone, as shown in Fig-
ure 2. There are 507 data points in this dataset,
approximately balanced across the 9 counts.*

Negations. To evaluate negations, we re-
purpose the VAW benchmark (Pham et al., 2021).
This dataset contains both positive and negative
attributes for a given bounding box. We crop the
bounding box (discarding those of insufficient
size), then write the templated caption “a photo
of a [object name] that is not [attribute]” with
three positive attributes and one negative attribute,
resulting in exactly one correct caption for the
image. We obtain 800 such data points.

Temporal reasoning. To evaluate temporal rea-
soning, we begin with the ControlledImCaps
benchmark (Kamath et al., 2023a), which contains
pairs of images with corresponding captions. We
select the temporal relation subset of this bench-
mark and split each data point into two data points
with one image and two caption options each. We
thus obtain 200 data points, perfectly balanced
across the sets of two options.

*CountBench has 540 images and is perfectly balanced,
but several images are no longer available [as of 02/2025].

6 Experiments and Results

Although we have shown that web-scale corpora
do not tend to have significant representation of
language related to the types of reasoning we
study, it is not self-evident that models would nec-
essarily be bad at these types of reasoning because
of it. They may not require a significant amount
of representation to learn the skill; or, alternately,
they may be able to learn it from data that op-
erationalized the skill but was not caught by our
keyword-matching occurrence prediction.

In this section, we evaluate popular contrastive
and generative VLMs on our benchmarks to ascer-
tain their reasoning capabilities. We then study the
effect on contrastive model performance of scal-
ing both the model parameter size and the training
data size, as well as the effect of adding multi-
lingual diversity to the training data. Finally, we
discuss the performance of popular closed-source
VLMs on our benchmarks.

6.1 Models

Contrastive VLMs. We evaluate OpenCLIP
(Cherti et al., 2023) models of different sizes:
ViT-B/32, ViT-B/16, ViT-L/14, ViT-g/14, and ViT-
H/14, as well as OpenCLIP ViT-B/32 trained
with multilingual diversity, i.e, with non-English
captions translated to English added to the data
(Nguyen et al., 2024). We evaluate these models
with an image-text matching task.



Model Spatial Negation Counting Temporal
CLIP ViT-B/32 30.6 11.5 43.4 58.5
+ ML Div. 27.4 15.5 233 51.5
CLIP ViT-B/16 27.7 12.7 48.1 55.0
(a) CLIP ViT-L/14 28.4 12.3 64.1 52.0
CLIP ViT-g/14 28.4 12.7 59.0 52.0
CLIP ViT-H/14 26.0 13.2 60.0 59.0
LLAVA-1.5-7B 37.6 334 473 72.5
LLAVA-1.5-13B 61.7 28.4 48.9 74.5
(b) Molmo 7B-O 75.5 38.4 77.5 78.0
Molmo 7B-D 87.6 413 83.8 80.5
LLAVA-1.6-m7B 60.0 40.6 52.9 70.0
QwenVL 7B-Chat  47.1 242 84.6 67.5
Qwen2VL 7B-Inst.  98.3 56.1 85.8 84.0
GPT4o0 91.5 222 90.9 95.0
GPT ol 97.6 64.7 88.2 97.0
(¢) Gemini 1.5-Flash 98.5 46.4 84.6 81.5
Gemini 1.5-Pro 92.0 49.0 87.8 85.0
Claude-3 Haiku 65.5 28.9 83.4 70.0
Claude-3.5 Sonnet ~ 95.4 42.0 92.3 83.5
Random Chance 25.0 25.0 11.1 50.0
Human Estimate 100 100 100 100

Table 3: Results on our benchmarks of: (a) Contrastive
VLMs, (b) Open-Source Generative VLMs, (c¢) Closed-
Source Generative VLMs. All models fall far behind
human performance on multiple types of reasoning.

Generative VLMs. We evaluate two generative
VLMs that have completely open-source train-
ing data: LLAVA-1.5 (Liu et al.,, 2024a) and
Molmo (Deitke et al., 2024), corresponding to
our studies in previous sections. We further eval-
uate several generative VLMs with mixed- or
closed-source training data: Qwen-VL (Bai et al.,
2023), Qwen2-VL (Wang et al., 2024), LLAVA-
1.6-Mistral (Liu et al., 2024b), GPT40 and ol
(OpenAl, 2024), Gemini-1.5 Flash and -1.5 Pro
(Team et al., 2024), and Claude-3 Haiku and -3.5
Sonnet (Anthropic, 2024). For these models, we
evaluate the model in a multiple-choice QA for-
mat (except for counting, which is free-form with
a given range, as discussed in Section 5).

6.2 Results

Contrastive VLMs. Table 3(a) shows the per-
formance of OpenCLIP models on our bench-
marks. The contrastive VLLMs score slightly above
random chance on spatial reasoning and temporal
reasoning, but score far less than random chance
on negations. We find that CLIP tends to ignore
negations, scoring the inverse of their attribute de-
tection performance (c.f. Appendix). The mod-
els perform fairly well on counting, although it is
worth noting that the counting benchmark was ini-
tially sourced from OpenCLIP training data.

Generative VLMs. Table 3(b) shows the perfor-
mance of open-source generative VLMs. The gen-
erative models outperform the contrastive models
on average, but fall far behind human performance
across all tasks, especially negation. Scaling up
LLAVA-1.5 significantly improves spatial reason-
ing performance, but no other type of reasoning.

6.3 Scaling Laws

In this section, we evaluate the aforementioned
OpenCLIP models with different training data
sizes (LAION-80M, LAION-400M, LAION-2B)
and number of data points seen during training
(3B, 13B, 34B), obtaining 32 models in total.
Each of these is evaluated on our benchmarks to
obtain scaling laws, as in Cherti et al. (2023). The
resulting graphs are shown in Figure 3. In contrast
to CLIP behavior on pure perception tasks such
as ImageNet (Deng et al., 2009), where the loss
drops steeply with an increase in data and/or pa-
rameter scale (Cherti et al., 2023), on our bench-
marks we see different patterns: on spatial reason-
ing, the scaling law struggles to fit the data points,
but it is clear that the loss does not drop with an
increase in compute; on counting, increasing com-
pute does seem to help, but noting the log scale,
the amount of compute would need to be several
orders of magnitude higher to reach human perfor-
mance at 0 loss; on negation, increasing compute
helps very slightly, but the loss remains very high
(~87%), and an intractable amount of compute
would be needed to reach human performance (at
loss 0%); and on temporal reasoning, increasing
compute does not improve performance.

Note that the prevalence of counting data far
surpasses that of negations, temporal or spatial
relations (c.f. Section 3.2), explaining its rela-
tively high performance — although the frequency
is still low on average compared to popular at-
tributes, and the model performance is far behind
human performance, which is 100%.

When we disentangle model scale from data
scale, we see very similar trends. From this, we
infer that neither scaling up the model size, nor the
training data size, improves model performance
beyond what is seen in Figure 3 — proving that
the underlying problem of reporting bias cannot
be mitigated with scale alone, as an intractable
amount of compute in the form of training data
and/or model parameters would be needed to reach
human performance on these benchmarks.
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6.4 Adding Captions from Other Languages

Nguyen et al. (2024) showed that adding multi-
lingual diversity to the training data of contrastive
VLMs by translating non-English web-scraped
alt-text to English can significantly improve their
performance on classification tasks; this work was
rooted in Ye et al. (2024), which highlighted the
difference in semantic content in images discussed
when people using different languages captioned
the same image. We ask: is leveraging this mul-
tilingual diversity sufficient to circumvent the re-
porting bias seen in image-text corpora? To study
this, we evaluate the OpenCLIP ViT-B/32 model
from Nguyen et al. (2024) on our benchmarks. As
seen in Table 3, this model actually underperforms
the OpenCLIP ViT-B/32 model trained on LAION
English captions alone — showing that these types
of reasoning are omitted by all speakers.

6.5 Closed-Source Generative Models

Top-performing closed-source models perform
well on our benchmarks, although they still fall
behind human performance, especially on nega-
tion and temporal reasoning. As the details behind
the data collection and training are not public, it
is difficult to draw inferences from these results;
however, the importance of data quality in addi-
tion to scale is clear from the efforts invested in
data collection (OpenAl, 2024).

7 Conclusion and Future Work

We study the reporting bias in vision-language:
specifically, the systematic omission of types of
information by people captioning images, which
then form the image-text corpora popular VLMs
are trained on. By identifying human behaviors
rooted in linguistics, pragmatics, and cognitive
science, we predict the types of information omit-
ted, verify their lack in public image-text corpora,
and show that contrastive and generative VLMs
trained on this data perform poorly on the types of
reasoning corresponding to the missing informa-
tion. Further, we reveal the importance of the in-
structions provided to annotators during data col-
lection, showing that intentional collection shows
promise in improving representation of reasoning-
related data in training corpora, which could in
turn improve reasoning capabilities of VLMs.

Future research directions include: (1) automat-
ing the identification of significant gaps in text and
images in training corpora; (2) synthesizing data
to fill those gaps; (3) finetuning models on aug-
mented data using different methods, e.g., hard
negative finetuning of contrastive models, or in-
struction finetuning of generative models; and (4)
eliciting captions that avoid the reporting bias in
a more natural way than programmatic augmen-
tation, e.g., by identifying communicative intents
that naturally call for this information.
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A Appendix

A.1 Details about Occurrence of
Reasoning-Related Keywords

Keywords. The keywords we search for are: (1)
“on top of”, “under”, “left of” and “right of” for
spatial reasoning; (2) “before” and “after” for tem-
poral reasoning; (3) “two”—“ten” and “2”—“10” for
counting; and (4) “not” and “n’t” for negations.

Estimating True Positive Rate. We discard
keyword occurrences that do not operationalize
the types of reasoning we study, e.g., “jeans un-
der $25” does not encourage spatial reasoning.

A.2 Details about the Controlled Study

Instructions provided. The instructions pro-
vided to annotators are kept as close as possible
to the original papers, with the reasoning-related
words kept verbatim. Instructions are visible to
the crowdworkers as they scroll through the im-
ages they annotate, as shown in Figure 4.

Figure 4: Instructions provided for the COCO (top
left), LLAVA-1.5 (top right), PixMo (bottom left) and
our (bottom right) sets of instructions.

Length experiment. We study whether asking
annotators to write longer captions increases the
types of reasoning represented. We collect an
additional 50 captions of the first 50 COCO im-
ages from our study, with the same instructions as
COCO captions. However, we require here that
the captions are all at least 50 words. In these 50
captions, 10 have spatial reasoning, 25 have count-
ing, and none have negations/temporal reasoning.
The prevalence of spatial and counting is about
double that of the study with an 8-word minimum.
It is clear that increasing the caption length does
encourage some types of reasoning, but it does not
serve as a solution to increasing representation of
all types of reasoning.

Counting. We see that the majority of object
counts are the number 2, which is easy for an-
notators to count. However, upon closer inspec-
tion of the data, we also see that there are simply
fewer images with >2 instances of any given ob-
ject. This highlights the need to study reporting
bias in the image space as well, rather than the text
space alone, as discussed in Section 7.

A.3 Qualitative Observations

CLIP ignores negations. When evaluating
negations, we observe that CLIP’s performance
on negated attributes ~ 100 — attribute recognition
performance. To investigate, we evaluate object
negation, and find that CLIP’s performance on
negated objects ~ 100 — object recognition per-
formance: the data points on which CLIP gets the
negated attribute/object correct are those on which
it gets the attribute/object incorrect; showing that
the model completely ignores the negation.

Models can count to smaller numbers better.
When evaluating counting, we observe that con-
trastive and generative VLMs both perform better
when counting small numbers than when counting
large ones; which also correlates with the num-
bers’ appearance in the training data: annotators
are more likely to count smaller numbers of ob-
jects — as the number increases, they default to
approximations such as “group of” and “several”.

“Left” and “right” are the most difficult spa-
tial relations for VLMs. Both contrastive and
generative models struggle more with “left” and
“right” than with “on” and “under”. This also cor-
relates with the relations’ appearance in the train-
ing data, and validates our earlier hypotheses: due
to the inherent ambiguity in these two relations
(“left” from which perspective?), symmetric rela-
tions like “next to” are preferred over asymmetric
types of grounding by annotators.

Contrastive VLMs can ignore keywords even
when they do occur in the training data. We
show that the phenomena we study are included
rarely in captions. When they are included,
though, it tends to be after the most salient infor-
mation of the image is already captured by the cap-
tion, i.e., they are included as a “least significant
bit” of information. As such, the contrastive loss
allows the model to ignore these parts of the cap-
tion completely, as the salient image features are
sufficient to retrieve the image in the batch.



