
SELECTIVE PREDICTION UNDER DOMAIN SHIFT

FOR QUESTION ANSWERING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Amita Kamath

May 2020



Copyright by Amita Kamath 2020

All Rights Reserved

ii



I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a thesis for the degree of Master of Science.

(Percy Liang) Principal Advisor

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a thesis for the degree of Master of Science.

(Christopher Manning) Secondary Advisor

Approved for the Stanford University Committee on Graduate Studies

iii



Abstract

Machine learning is becoming increasingly prevalent in a wide range of real-world applications. To

avoid giving incorrect outputs, which could have dire consequences, these models must know when to

abstain from answering. Additionally, machine learning models perform poorly when encountering

examples from outside their training distribution, which is an inevitable occurrence for deployed

systems. This makes errors more likely, and thus abstention more critical. Question answering

(QA) models are a prime example: now widely used in web search engines, their performance su↵ers

on out-of-domain inputs. An abstention policy for QA systems that works despite domain shift is

thus required. In this work, we propose the setting of selective prediction under domain shift for

question answering, in which a QA model is tested on a mixture of in-domain and out-of-domain

data, and must answer (i.e., not abstain on) as many questions as possible while maintaining high

accuracy. Abstention policies based solely on model output probabilities fare poorly, since models

are overconfident on out-of-domain inputs. Instead, we train a calibrator to identify inputs on which

the QA model errs, and abstain when it predicts an error is likely. Crucially, the calibrator benefits

from observing the model’s behavior on out-of-domain data, even if from a di↵erent domain than

the test data. We conduct extensive experiments combining this method with a SQuAD-trained QA

model and evaluating on mixtures of SQuAD and five other QA datasets. Our method answers 56%

of questions while maintaining 80% accuracy; in contrast, directly using the model’s probabilities

only answers 48% at 80% accuracy.
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Chapter 1

Introduction

Machine learning has become ubiquitous in a wide range of real-world systems, from predicting the

weather (Gneiting and Raftery, 2005; Brocker, 2009) to aiding medical diagnoses (Khan et al., 2001;

Hanczar and Dougherty, 2008; Rajpurkar et al., 2017). However, machine learning models have been

shown to perform poorly when encountering examples di↵erent from those they were trained on, i.e.,

under domain shift, an inevitable occurrence for deployed systems. In many situations, it is preferable

for the model to produce no output, i.e., to abstain, rather than produce an incorrect output. In this

chapter, we introduce selective prediction (Section 1.1), which can be used to allow machine learning

models to abstain from producing outputs that they are insu�ciently confident in. We then discuss

the need for selective prediction methods that work despite domain shift (Section 1.2). Finally, we

detail the contributions and structure of this thesis (Section 1.3).

1.1 Selective Prediction

Machine learning models are being used for an increasing number of real-world applications, including

safety- and business-critical ones such as aiding medical diagnoses and processing insurance claims

(Khan et al., 2001; Hanczar and Dougherty, 2008; Avanzi et al., 2020). For these models, knowing

when to abstain rather than producing an erroneous output is critical to prevent severe consequences.

For example, consider a machine learning model trained to read a medical report and output

whether or not a patient has a particular disease to aid a medical expert in diagnosis. If the model

is insu�ciently confident in its prediction, we would vastly prefer it to abstain from producing

the output and back-o↵ to the medical expert, rather than return an output which could likely be

incorrect, potentially biasing them (Uyumazturk et al., 2019).

This motivates selective prediction, wherein a system outputs a prediction based on the probability

distribution produced by the machine learning model, as well as a scalar confidence in that prediction.

If the confidence is below some user-defined threshold, the system abstains from returning the

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Diagram of a model with selective prediction. The system outputs the model prediction
ŷ if confidence c � �, the confidence threshold. Else, it abstains.

prediction, as depicted in Figure 1.1.

Selective prediction is of importance to a wide range of research fields, including computational

chemistry (Toplak et al., 2014; Zhang and Lee, 2019), finance (El-Yaniv and Pidan, 2011), medical

applications (Feng et al., 2019), and Natural Language Processing (NLP) (Dong et al., 2018; Yang

et al., 2015; Jurczyk et al., 2016). We discuss these in greater detail in Section 2.1.3.

1.2 Selective Prediction under Domain Shift

While selective prediction is a well-studied field within a single domain, we study it under the

practical setting of domain shift. Domain shift is when the examples that a machine learning model

is tested on do not always come from the model’s training distribution. This is inevitable for systems

in production, additionally so because distributions have been shown to change over time (Kramer,

1988). In these settings, model accuracy almost always su↵ers (Geiger et al., 2019), making selective

prediction even more essential.

Going back to our model that predicts whether a patient has a disease given their medical report,

assume we give it a report di↵erent in some way from those it saw at training time, i.e. a report that

is out-of-domain (OOD). For example, the model could have been trained on medical reports written

by doctors from one region, and we now give it a report written by a doctor from another.

While ideally, the model could generalize to this OOD input, prior work shows that machine

learning models cannot generalize to all OOD inputs given limited training data (Geiger et al., 2019).

However, if the confidence estimate of the system is su�ciently low on this OOD sample, the system

can abstain if necessary and avoid returning an incorrect output.

Thus, we need a selective prediction method that works despite domain shift, i.e. performs well

on both in-domain and OOD inputs, without needing a gold label of whether an input is in-domain

or OOD (reflective of test-time conditions).

Selective prediction under domain shift for NLP. Domain shift is a pressing issue in NLP.

Models that perform extremely well on benchmark datasets have been shown to err on OOD examples,

in ways that suggest they have solved the dataset but not the task itself (Blitzer et al., 2006; Jiang

and Zhai, 2007; Jia and Liang, 2017; Yogatama et al., 2019). Selective prediction under domain shift

is thus essential to enable NLP systems to abstain on such examples.
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1.3 Thesis Overview

In this work we improve the performance of selective prediction under domain shift for the NLP task

of Question Answering, assuming only limited access to OOD data separate from the test data. To

the best of our knowledge, our work is the first to study selective prediction under domain shift in NLP.

The contributions of this thesis are as follows:

1. We propose a novel setting, selective question answering under domain shift, that captures the

practical necessity of knowing when to abstain on test data that di↵ers from the training data.

2. We show that QA models are overconfident on out-of-domain examples relative to in-domain

examples, which causes strong baselines using model output probablities to perform poorly in

our setting.

3. We show that out-of-domain data, even from a di↵erent distribution than the test data, can

improve selective prediction under domain shift when used to train a calibrator.

The remainder of the thesis is structured as follows: In Chapter 2, we cover prerequisites necessary

to understand selective prediction, domain shift, question answering, as well as related topics such as

calibration. In Chapter 3, we discuss selective prediction under domain shift for the task of question

answering, proposing a new method to improve performance. In Chapter 4, we conclude the thesis

with a discussion on the need for our proposed setting in practical systems, and a description of

several interesting directions for future work.



Chapter 2

Background

In this chapter, we discuss selective prediction in Section 2.1, detailing its basic definitions (Sec-

tion 2.1.1), prior work (Section 2.1.2), and various fields in which it has been studied (Section 2.1.3).

We then discuss calibration in Section 2.2 and how it is related to yet distinct from selective prediction.

Next, in Section 2.3, we examine prior work in domain shift. Finally, we discuss the NLP task of

question answering in Section 2.4, showing why domain shift for this task is an important concern.

2.1 Selective Prediction

2.1.1 Definitions

Given an input x, the selective prediction task is to output (ŷ, c) where ŷ 2 Y (x), the set of answer

candidates, and c 2 R denotes the model’s confidence. Given a threshold � 2 R, the system predicts

ŷ if c � � and abstains otherwise1, as shown in Figure 1.1.

A standard way to evaluate selective prediction methods is using the risk-coverage curve (El-Yaniv

and Wiener, 2010). The coverage of the model is the fraction of the test data that the model makes

a prediction on at a given �. The risk of the model at that coverage is the fraction of these test

inputs for which the prediction made was incorrect. As � decreases, the coverage tends to increase.

However, the risk also increases, as the underlying model does not have perfect accuracy on the test

data. Examples of a risk-coverage curve and an optimal risk-coverage curve are given in Figure 2.1.

We evaluate the area under this curve (AUC) as a metric averaging over all �: the lower the

AUC, the better. We also evaluate the maximum possible coverage for a desired risk level, which

evaluates at a particular choice of � corresponding to a specific level of risk tolerance: the higher the

coverage at a desired risk level, the better.

1where abstain 62 Y (x)

4



CHAPTER 2. BACKGROUND 5

Figure 2.1: Risk-coverage curves in optimal and realistic scenarios. As � decreases, the coverage
increases at the cost of risk. The optimal selective prediction method maintains zero risk until it is
forced to answer questions the underlying model gets incorrect at coverage = (1� total risk), after
which the risk increases. In comparison, with the realistic method, the risk increases gradually.

A note on optimality Consider a selective prediction method that assigns a higher confidence to

all test data points which an underlying model gets correct, than to the test data points the model

gets incorrect. This method is optimal amongst a subset of possible selective predictors that all

produce the same ŷ’s, but di↵erent c’s. However, its AUC is still greater than 0, as the underlying

model’s accuracy on the test dataset is not perfect. Say the model error on the full test dataset, i.e.

the test error, is R. As � decreases, the system is forced to predict on data points which the model

gets incorrect, and hence risk y increases with coverage x as y =
x� (1�R)

x
. The minimum possible

AUC is thus

Z 1

1�R
y dx = R+ (1� R) log(1� R). In Figure 2.1, the risk on the full dataset, R, is

0.3813. At coverage = 1� 0.3813, the optimal selective prediction method must answer questions the

model gets incorrect, reaching the same risk at full coverage as any other selective prediction method.

The minimum possible AUC achieved by the optimal selective prediction method here is 8.43.

2.1.2 Prior work

Selective prediction is a long-standing area of focus in machine learning. In this section, we discuss

several methods that have been proposed for selective prediction.

Chow (1957) introduces a “rejection channel” to their character recognition system in order to

measure the ambiguity of the input, determined by the system probabilities assigned to the various
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output classes, and rejects inputs accordingly to prevent erroneous outputs. However, this work

assumes that the underlying probability distributions are fully known.

El-Yaniv and Wiener (2010) define selective prediction as a risk-coverage tradeo↵, proposing the

risk-coverage curve discussed in Section 2.1.1. Hendrycks and Gimpel (2017) study MaxProb, a

strong baseline for selective prediction. MaxProb is a method that abstains based on the probability

assigned by the model to its highest probability label in Y (x).

Ensemble techniques have long been considered for selective prediction. Varshney (2011) study

random forests (an ensemble classifier), and abstain from predicting if the average classification

score falls within a threshold surrounding the decision boundary. In the era of deep neural networks,

Lakshminarayanan et al. (2017) propose that ensembling captures model confidence by aggregating

model probabilities over multiple models consistent with the training data.

A significant drawback of ensemble techniques for deep neural networks is that they are costly,

requiring the training and querying of multiple ensemble members. Gal and Ghahramani (2016)

propose an alternate solution in which an ensemble is instead created during test time, by using K

di↵erent dropout masks in the forward pass through the model to generate K prediction distributions.

Statistics over these distributions are then used to calculate a confidence estimate. Although this

method performs well on selective prediction and avoids the need to train multiple models, it requires

K forward passes of the model, leading to a K-fold increase in runtime. Geifman and El-Yaniv (2017)

discuss selective classification techniques as applied to deep neural networks, showing that MaxProb

performs as well as or better than test-time dropout on several image classification tasks.

An alternate method that integrates the reject option into the architecture of the model itself is

proposed by Geifman and El-Yaniv (2019). The model is trained to optimize both classification and

rejection simultaneously. While this is a useful technique to improve selective prediction, it requires

changes to the architecture and training of the model on the new objectives. In this work we propose

a technique that does not require any changes to the model architecture or training.

2.1.3 Selective prediction in diverse fields

Selective prediction has been studied in a wide variety of fields.

In computational chemistry, selective prediction has been used to determine applicability domain,

i.e. the input space in which a model makes reliable predictions about properties of chemicals

based on their chemical structure (Toplak et al., 2014; Zhang and Lee, 2019), reducing the need for

expensive testing. In finance, selective prediction has been used to obtain confidence estimates for

predicting short-term financial trends (El-Yaniv and Pidan, 2011).

In the medical field, selective prediction could be of use for machine learning models in safety-

critical applications that necessitate low risk, such as patient diagnosis (Khan et al., 2001; Hanczar

and Dougherty, 2008) and ICU prediction tasks (Feng et al., 2019). Confidence estimates of these

models could result in safer usage practices, particularly in light of the findings of Uyumazturk et al.
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(2019), who show that pathologist diagnoses are significantly biased by a machine learning-based

diagnostic assistant, for both correct and incorrect model outputs.

In the field of NLP, traditional systems typically have a natural ability to abstain. SHRDLU

recognizes statements that it cannot parse, or that it finds ambiguous (Winograd, 1972). QUALM

answers reading comprehension questions by constructing reasoning chains, abstaining if it cannot

find any chain that supports an answer (Lehnert, 1977). More recently, selective prediction has been

used for semantic parsing (Dong et al., 2018), question answering (Su et al., 2019) and to decide when

to answer QuizBowl questions (Rodriguez et al., 2019). Knowing when to abstain is also essential

for virtual assistants and answer-triggered systems, when none of the answer candidates for a given

question appear correct (Yang et al., 2015; Jurczyk et al., 2016)2. In these works, the training and

test data come from the same distribution. To the best of our knowledge, our work is the first to

study selective prediction under domain shift for NLP.

2.2 Calibration

Calibration is achieved when the prediction probability that a system outputs for an event aligns

with the true frequency of that event (Philip, 1982). For example, if a weather forecaster predicts

that it will rain for 10 days with probability 0.3, it should rain for approximately 3 of the 10 days.

Figure 2.2 shows examples of calibration curves, to be discussed in greater detail in Section 3.5.3.

The importance of model calibration has been shown for clinical settings (Jiang et al., 2012) and

meteorological reports (Murphy, 1973; Murphy and Winkler, 1977; DeGroot and Fienberg, 1983;

Gneiting and Raftery, 2005; Brocker, 2009). There are several well-established methods to recalibrate

model probabilities, including Platt scaling (Platt, 1999) and isotonic regression (Zadrozny and Elkan,

2002). Ovadia et al. (2019) observe increases in calibration error under domain shift.

A key distinction between selective prediction and calibration is that selective prediction metrics

generally depend only on relative confidences: systems are judged on their ability to rank correct

predictions higher than incorrect predictions (El-Yaniv and Wiener, 2010). In contrast, calibration

error depends on the absolute confidence scores. Consider an example in which the data points of

a test dataset are ordered such that the examples the model gets incorrect all appear before the

examples the model gets correct. If confidences are given to each example in a uniformly increasing

manner from 0 to 1, the system is poorly calibrated: it is overconfident on nearly all of the examples

the model gets incorrect, and underconfident on nearly all of the examples the model gets correct.

However, it has optimal selective prediction, because the relative ordering of the confidences was

correct.

Despite this distinction, we will find it useful to analyze calibration in Section 3.5.3, as being

miscalibrated on examples from one domain but not those from another implies poor relative ordering,

2Refer to Appendix B for entertaining real-world examples of when models should have abstained!
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Figure 2.2: Example of calibration curves of a selective prediction method, MaxProb, discussed in
Section 3.5.3. The blue line is underconfident, the orange line is overconfident, and the black dashed
line represents perfect calibration.

and therefore poor selective prediction. This di↵erence in calibration across domains, in combination

with not knowing at test time which domain an example comes from, precludes us from using

traditional recalibration techniques to improve selective prediction performance.

2.3 Domain Shift

A common assumption in machine learning literature is that the training and test data are drawn in

an i.i.d. manner from the same distribution (Valiant, 1984). However, this does not often hold in

practice. In most practical scenarios, it is unrealistic to assume that one has full knowledge of the

test distribution at training time — deployed models inevitably face unexpected outputs at test time.

Various types of approaches to tackle domain shift have been proposed. We categorize these

approaches into four categories based on two simple criteria:

1. The data the model has access to at train time: whether or not OOD samples were available at

train time.

2. The type of data the model is evaluated on at test time: whether the model is being tested on

OOD samples alone, or a mixture of in-domain and OOD samples.

These categories are depicted in Figure 2.3, as Categories I, II, III and IV.
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Figure 2.3: The four categories of domain shift discussed in this section, based on the data accessible
at training time (Y axis) and type of data the model is evaluated on at test time (X axis).

Category I: trained in-domain, tested OOD. This category is studied in the literature as

unsupervised domain adaptation (Quiñonero-Candela et al., 2009), or as zero-shot learning. Here,

the goal is to adapt directly from a labeled source domain to an unlabeled target domain. Some

methods in this category involve learning domain-invariant representations (Zhao et al., 2019; Shu

et al., 2018).

Category II: trained in-domain, tested on mixture. This category evaluates the model on a

mixed setting, without having access to any OOD data at training time. This challenging setting is

tackled in Hendrycks and Gimpel (2017), in which model probabilities are used to identify OOD

examples at test time. Notably, the goal here is outlier detection, and not improving model accuracy

on OOD examples.

Category III: trained on mixture, tested OOD. This category is more popularly studied; in

which some number of labeled OOD examples are available at training time, and the model must

perform well on OOD samples at test time. This is also known as few-shot learning (Fink, 2004;

Fei-Fei et al., 2006). In NLP, this setting has been studied for tasks including QA (Talmor and

Berant, 2019), language modeling (Vinyals et al., 2016), machine translation (Kaiser et al., 2017),

sentiment (Blitzer et al., 2007), and part-of-speech tagging and named entity recognition (Blitzer

et al., 2006; Jiang and Zhai, 2007; Daume III, 2007).

Category IV: trained and tested on mixture. This category evaluates the model on a mixed

setting, with exposure to OOD data at training time. Importance weighting based methods (Jiayuan

et al., 2006; Shimodaira, 2000; Sugiyama et al., 2007) fall under this category, as they assume overlap
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between the source and target domains. Work tackling goals other than improving model accuracy

on the test data include Hendrycks et al. (2019b), which tackles outlier detection, making the looser

assumption of having access to OOD data that does not belong to the test dataset. The work

outlined in this thesis also makes this looser assumption, and falls under this category, tackling

selective prediction — a task for which the mixture setting is especially challenging, as discussed in

Section 3.5.3. We detail the specific nature of domain shift we study in Section 3.3.2.

Other types of domain shift. These include concept drift (Kramer, 1988) and gradual domain

shift (Bobu et al., 2018; Michael et al., 2018; Markus et al., 2018; Kumar et al., 2020), which make

di↵erent assumptions about the train and test distributions, primarily with respect to how they

change over time, as well as how much of the data accessible is labeled.

2.4 Question Answering

Question answering (QA) is a well-known NLP task that has become popular as a method to evaluate

how well machine learning models understand natural language. It is also critical to several industry

applications, including search engines (Kwiatkowski et al., 2019) and dialogue systems (Reddy et al.,

2018; Choi et al., 2018). We focus on extractive QA, in which a machine learning model is given a

passage and a question, and must answer the question by selecting a span from the passage. Several

extractive QA datasets are discussed further on in this section.

2.4.1 Extractive Question Answering Datasets

This section discusses some popular extractive QA datasets. These di↵er from each other significantly

in multiple ways: based on where the passages are sourced from, the type of question, the passage

and question lengths, as well as the data collection method, which influences the relationship between

the passage and question. For all of the below datasets, we consider only answerable questions in

this study. The metric we consider is model accuracy, measured based on whether each prediction is

an exact match to the corresponding answer(s).3

SQuAD. SQuAD (Rajpurkar et al., 2016) sources passages from Wikipedia and questions from

crowdworkers who were provided the passage. It was the first large-scale extractive QA dataset. The

average question length is 11 tokens, and the average passage length is 137 tokens. An example from

SQuAD is shown in Figure 2.4a. SQuAD 2.0 (Rajpurkar et al., 2018) added to SQuAD the concept

of “unanswerable questions”, which the QA model must recognize as such based on lack of support

in the given passage. We discuss the di↵erence between recognizing unanswerable questions and

abstaining in Section 3.2.

3Some datasets provide multiple annotated answers per question, which acts as a more accurate evaluation metric.
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TriviaQA. TriviaQA (Joshi et al., 2017) sources questions from trivia and quiz-league websites,

and passages from web snippets returned by a Bing search query. The average question length is

16 tokens, and the average passage length is 784 tokens. An example from TriviaQA is shown in

Figure 2.4b.

HotpotQA. In HotpotQA (Yang et al., 2018), each passage consists of two paragraphs from

Wikipedia linked by a “bridge entity”. The questions are sourced from crowdworkers, who were

provided these two paragraphs and requested to write questions requiring multi-hop reasoning to

solve. The average question length is 22 tokens, and the average passage length is 232 tokens. An

example from HotpotQA is shown in Figure 2.4c.

NewsQA. NewsQA (Trischler et al., 2017) sources passages from CNN news articles and questions

from crowdworkers who only see the article headline and summary (although the answers are provided

by crowdworkers who can see the full article). The average question length is 8 tokens, and the

average passage length is 599 tokens. An example from NewsQA is shown in Figure 2.4d.

Natural Questions. Natural Questions (Kwiatkowski et al., 2019) sources questions from real

users’ Google search queries. We focus on the “Short Answer” setting, in which the passage is a

Wikipedia paragraph containing the answer. Although, like SQuAD, the passages are sourced from

Wikipedia, unlike SQuAD, this dataset includes lists and tables. The average question length is 9

tokens, and the average passage length is 153 tokens. An example from Natural Questions is shown

in Figure 2.4e.

SearchQA. SearchQA (Dunn et al., 2017) sources questions from the Jeopardy! TV show, which

very notably phrases their questions as sentences. The passages consist of web snippets returned by

a Google search query. The average question length is 17 tokens, and the average passage length is

749 tokens. An example from SearchQA is shown in Figure 2.4f. Surprisingly, in this example, the

question appears verbatim in the passage. This is true for many of the SearchQA examples due to

the nature of the data collection.

2.4.2 Prior work

The large number of extractive QA datasets available, as well as the high accuracy models have

achieved on each of these, may seem to imply that QA is a solved task. However, recent work shows

that QA models that achieve state-of-the-art performance on a particular dataset perform poorly

on OOD examples (Fisch et al., 2019; Chen et al., 2017; Jia and Liang, 2017; Talmor and Berant,

2019; Yogatama et al., 2019). Although this may be understandable, given how significantly di↵erent

these datasets are from each other (as seen in Section 2.4.1), it has increased the focus on making

QA systems that can handle domain shift.
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Jia and Liang (2017) present adversarial QA examples that fool a model into selecting an incorrect

answer span. While training the model on these OOD examples improves performance on them, it

does not improve robustness of the model against slightly di↵erent types of adversarial inputs — a

concerning observation, given that it is unrealistic to expect access to the full test distribution at

training time.

In contrast, in the more natural setting of evaluating on di↵erent extractive QA datasets, Talmor

and Berant (2019) show that training on OOD data may improve the model performance on test

data sampled from a separate distribution. However, if the new distribution involves new types of

questions or requires di↵erent reasoning skills, models trained on multiple domains may still struggle.

Fisch et al. (2019) present a shared task in which the goal is to evaluate how well QA systems

can generalize to di↵erent datasets. The systems submitted to this task used techniques including

data sampling, multi-task learning, adversarial training and ensembling to improve generalization.

However, it is made clear that there is significant room for improvement.

Selective prediction under domain shift is thus required to enable the system to abstain on test

examples where the QA model may err. We propose our method to achieve this in the next chapter.
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(a) SQuAD example. (b) TriviaQA example.

(c) HotpotQA example. (d) NewsQA example.

(e) Natural Questions example. (f) SearchQA example.

Figure 2.4: Examples from di↵erent extractive QA datasets. The relevant keywords are shown in
blue, and the correct answer in green. Portions of the passage omitted for spatial constraints have
been represented using ellipses.



Chapter 3

Selective Question Answering

under Domain Shift

3.1 Introduction

In this chapter, we focus on selective prediction under domain shift for the NLP task of Question

Answering (QA), or selective Question Answering under domain shift.1 As discussed in Section 2.4,

QA models have achieved impressive performance when trained and tested on examples from the

same dataset, but tend to perform poorly on examples that are out-of-domain (OOD) (Jia and Liang,

2017; Chen et al., 2017; Yogatama et al., 2019; Talmor and Berant, 2019; Fisch et al., 2019).

Deployed QA systems in search engines and personal assistants need to gracefully handle OOD

inputs, as users often ask questions that fall outside of the system’s training distribution. While

the ideal system would correctly answer all OOD questions, such perfection is not attainable given

limited training data (Geiger et al., 2019). Instead, we aim for a more achievable yet still challenging

goal: models should abstain when they are likely to err, thus avoiding showing wrong answers to

users. This general goal motivates the setting of selective prediction, as defined in Section 2.1.1.

We propose the setting of selective question answering under domain shift, which captures

two important aspects of real-world QA: (i) test data often diverges from the training distribution,

and (ii) systems must know when to abstain. We train a QA model on data from a source distribution,

then evaluate selective prediction performance on a dataset that includes samples from both the

source distribution and an unknown OOD distribution. This mixture simulates the likely scenario in

which users only sometimes ask questions that are covered by the training distribution. While the

system developer knows nothing about the unknown OOD data, we allow access to a small amount

of data from a third known OOD distribution (e.g., OOD examples that they can foresee).

1We don’t refer to the latter using an acronym, for reasons left to the reader to infer.

14
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Dataset Distributions Example question

Q: What can result from disorders
of the immune system? (from SQuAD)

Q: John Wickham Legg was recommended
by Jenner for the post of medical attendant
to which eighth child and youngest son of
Queen Victoria and Prince Albert of
Saxe-Coburg and Gotha? (from HotpotQA)

Q: Capote gained fame with this “other”
worldly 1948 novel about a teenager
in a crumbling southern mansion.
(from SearchQA)

Train

Calibrate

Test

Source

Source Known
OOD

Source Unknown
OOD

Figure 3.1: Selective question answering under domain shift with a trained calibrator. First, a QA
model is trained only on source data. Then, a calibrator is trained to predict whether the QA model
was correct on any given example. The calibrator’s training data consists of both previously held-out
source data and known OOD data. Finally, the combined selective QA system is tested on a mixture
of test data from the source distribution and an unknown OOD distribution.

We first show that our setting is challenging because model softmax probabilities are unreliable

estimates of confidence on out-of-domain data. Prior work has shown that a strong baseline for

in-domain selective prediction is MaxProb, a method that abstains based on the probability assigned

by the model to its highest probability prediction (Hendrycks and Gimpel, 2017; Lakshminarayanan

et al., 2017). We find that MaxProb gives good confidence estimates on in-domain data, but is

overconfident on OOD data. Therefore, MaxProb performs poorly in mixed settings: it does not

abstain enough on OOD examples, relative to in-domain examples.

We correct for MaxProb’s overconfidence by using known OOD data to train a calibrator—a

classifier trained to predict whether the original QA model is correct or incorrect on a given example

(Platt, 1999; Zadrozny and Elkan, 2002). While prior work in NLP trains a calibrator on in-domain

data (Dong et al., 2018), we show this does not generalize to unknown OOD data as well as training

on a mixture of in-domain and known OOD data. Figure 3.1 illustrates the problem setup and how

the calibrator uses known OOD data. We use a simple random forest calibrator over features derived

from the input example and the model’s softmax outputs.

We conduct extensive experiments using SQuAD (Rajpurkar et al., 2016) as the source distribution

and five other QA datasets as di↵erent OOD distributions. We average across all 20 choices of

using one as the unknown OOD dataset and another as the known OOD dataset, and test on a

uniform mixture of SQuAD and unknown OOD data. On average, the trained calibrator achieves

56.1% coverage (i.e., the system answers 56.1% of test questions) while maintaining 80% accuracy

on answered questions, outperforming MaxProb with the same QA model (48.2% coverage at 80%

accuracy), using MaxProb and training the QA model on both SQuAD and the known OOD data

(51.8% coverage), and training the calibrator only on SQuAD data (53.7% coverage).
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3.2 Related Goals and Tasks

Calibration. As discussed in Section 2.2, calibration relies on absolute confidence scores, whereas

selective prediction relies on the relative ordering of these scores. However, we analyze calibration in

Section 3.5.3, as miscalibration on some examples but not others implies poor relative ordering, and

therefore poor selective prediction. Ovadia et al. (2019) observe increases in calibration error under

domain shift.

Answer validation. Traditional pipelined systems for open-domain QA often have dedicated

systems for answer validation—judging whether a proposed answer is correct. These systems often

rely on external knowledge about entities (Magnini et al., 2002; Ko et al., 2007). Knowing when to

abstain has been part of past QA shared tasks like Answer Validation Excercise (AVE) (Peñas et al.,

2007 2007), RespubliQA (Peñas et al., 2009) and QA4MRE (Peñas et al., 2013). IBM’s Watson

system for Jeopardy also uses a pipelined approach for answer validation (Gondek et al., 2012). Our

work di↵ers by focusing on modern neural QA systems trained end-to-end, rather than pipelined

systems, and by viewing the problem of abstention in QA through the lens of selective prediction.

Identifying unanswerable questions. In SQuAD 2.0, models must recognize when a paragraph

does not entail an answer to a question (Rajpurkar et al., 2018). Sentence selection systems must

rank passages that answer a question higher than passages that do not (Wang et al., 2007; Yang

et al., 2015). In these cases, the goal is to “abstain” when no system (or person) could infer an

answer to the given question using the given passage. In contrast, in selective prediction, the model

should abstain when it would give a wrong answer if forced to make a prediction. This is discussed

further in Section 3.5.7.

Outlier detection. We distinguish selective prediction under domain shift from outlier detection,

the task of detecting out-of-domain examples (Schölkopf et al., 1999; Hendrycks and Gimpel, 2017;

Liang et al., 2018). While one could use an outlier detector for selective classification (e.g., by

abstaining on all examples flagged as outliers), this would be too conservative, as QA models can

often get a non-trivial fraction of OOD examples correct (Talmor and Berant, 2019; Fisch et al.,

2019). Hendrycks et al. (2019b) use known OOD data for outlier detection by training models to

have high entropy on OOD examples; in contrast, our setting rewards models for predicting correctly

on OOD examples, not merely having high entropy.

3.3 Problem Setup

We formally define the setting of selective prediction under domain shift, starting with some notation

for selective prediction in general, in addition to what we covered in Section 2.1.1.
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3.3.1 Selective Prediction

Given an input x, the selective prediction task is to output (ŷ, c) where ŷ 2 Y (x), the set of answer

candidates, and c 2 R denotes the model’s confidence. Given a threshold � 2 R, the overall system

predicts ŷ if c � � and abstain otherwise.

The risk-coverage curve provides a standard way to evaluate selective prediction methods (El-

Yaniv and Wiener, 2010). For a test dataset Dtest, any choice of � has an associated coverage—the

fraction of Dtest the model makes a prediction on—and risk—the error on that fraction of Dtest. As

� decreases, coverage increases, but risk will usually also increase. We plot risk versus coverage and

evaluate on the area under this curve (AUC), as well as the maximum possible coverage for a desired

risk level. The former metric averages over all �, painting an overall picture of selective prediction

performance, while the latter evaluates at a particular choice of � corresponding to a specific level of

risk tolerance. We strive to lower the former metric and increase the latter.

3.3.2 Selective Prediction under Domain Shift

We deviate from prior work by considering the setting where the model’s training data Dtrain and

test data Dtest are drawn from di↵erent distributions. As our experiments demonstrate, this setting

is challenging because standard QA models are overconfident on out-of-domain inputs.

To formally define our setting, we specify three data distributions. First, psource is the source

distribution, from which a large training dataset Dtrain is sampled. Second, qunk is an unknown OOD

distribution, representing out-of-domain data encountered at test time. The test dataset Dtest is

sampled from ptest, a mixture of psource and qunk:

ptest = ↵psource + (1� ↵)qunk (3.1)

for ↵ 2 (0, 1). We choose ↵ = 1
2 , and examine the e↵ect of changing this ratio in Section 3.5.8. Third,

qknown is a known OOD distribution, representing examples not in psource but from which the system

developer has a small dataset Dcalib.

3.3.3 Selective Question Answering

While our framework is general, we focus on extractive question answering, as exemplified by SQuAD

(Rajpurkar et al., 2016), due to its practical importance and the diverse array of available QA datasets

in the same format. The input x is a passage-question pair (p, q), and the set of answer candidates

Y (x) is all spans of the passage p. A base model f defines a probability distribution f(y | x) over
Y (x). All selective prediction methods we consider choose ŷ = argmaxy02Y (x) f(y

0 | x), but di↵er in
their associated confidence c.
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3.4 Methods

Recall that our setting di↵ers from the standard selective prediction setting in two ways: unknown

OOD data drawn from qunk appears at test time, and known OOD data drawn from qknown is available

to the system. Intuitively, we expect that systems must use the known OOD data to generalize to

the unknown OOD data. In this section, we present three standard selective prediction methods for

in-domain data, and show how they can be adapted to use data from qknown.

3.4.1 MaxProb

The first method, MaxProb, directly uses the probability assigned by the base model to ŷ as an

estimate of confidence. Formally, MaxProb with model f estimates confidence on input x as:

cMaxProb = f(ŷ | x) = max
y02Y (x)

f(y0 | x). (3.2)

MaxProb is a strong baseline for our setting. Across many tasks, MaxProb has been shown

to distinguish in-domain test examples that the model gets right from ones the model gets wrong

(Hendrycks and Gimpel, 2017). MaxProb is also a strong baseline for outlier detection, as it is lower

for out-of-domain examples than in-domain examples (Lakshminarayanan et al., 2017; Liang et al.,

2018; Hendrycks et al., 2019b). This is desirable for our setting: models make more mistakes on

OOD examples, so they should abstain more on OOD examples than in-domain examples.

MaxProb can be used with any base model f . We consider two such choices: a model fsrc trained

only on Dtrain, or a model fsrc+known trained on the union of Dtrain and Dcalib.

3.4.2 Test-time Dropout

For neural networks, another standard approach to estimate confidence is to use dropout at test time.

Gal and Ghahramani (2016) showed that dropout gives good confidence estimates on OOD data, as

discussed briefly in Section 2.1.2.

Given an input x and model f , we compute f on x with K di↵erent dropout masks, obtaining

prediction distributions p̂1, . . . , p̂K , where each p̂i is a probability distribution over Y (x). We consider

two statistics of these p̂i’s that are commonly used as confidence estimates. First, we take the mean

of p̂i(ŷ) across all i (Lakshminarayanan et al., 2017):

cDropoutMean =
1

K

KX

i=1

p̂i(ŷ). (3.3)

This can be viewed as ensembling the predictions across all K dropout masks by averaging them.
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Second, we take the negative variance of the p̂i(ŷ)’s (Feinman et al., 2017; Smith and Gal, 2018):

cDropoutVar = �Var[p̂1(ŷ), . . . , p̂K(ŷ)]. (3.4)

Higher variance corresponds to greater uncertainty, and hence favors abstaining. Like MaxProb,

dropout can be used either with f trained only on Dtrain, or on both Dtrain and the known OOD

data.

Test-time dropout has practical disadvantages compared to MaxProb. It requires access to

internal model representations, whereas MaxProb only requires black box access to the base model

(e.g., API calls to a trained model). Dropout also requires K forward passes of the base model,

leading to a K-fold increase in runtime.

3.4.3 Training a calibrator

Our final method trains a calibrator to predict when a base model (trained only on data from psource)

is correct (Platt, 1999; Dong et al., 2018). We di↵er from prior work by training the calibrator on a

mixture of data from psource and qknown, anticipating the test-time mixture of psource and qunk. More

specifically, we hold out a small number of psource examples from base model training, and train the

calibrator on the union of these examples and the qknown examples. We define cCalibrator to be the

prediction probability of the calibrator.

The calibrator itself could be any binary classification model. We use a random forest classifier

with seven features: passage length, the length of the predicted answer ŷ, and the top five softmax

probabilities output by the model. These features require only a minimal amount of domain knowledge

to define. Rodriguez et al. (2019) similarly used multiple softmax probabilities to capture the softmax

distribution entropy, to decide when to answer questions. The simplicity of this model makes the

calibrator fast to train when given new data from qknown, especially compared to re-training the QA

model on that data.

We experiment with four variants of the calibrator. First, to measure the impact of using known

OOD data, we change the calibrator’s training data: it can be trained either on data from psource

only, or both psource and qknown data as described. Second, we consider a modification where instead

of the model’s probabilities, we use probabilities from the mean ensemble over dropout masks, as

described in Section 3.4.2, and also add cDropoutVar as a feature. As discussed above, dropout features

are costly to compute and assume white-box access to the model, but may result in better confidence

estimates. Both of these variables can be changed independently, leading to four configurations.
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3.5 Experiments and Analysis

3.5.1 Experimental Details

Data. We use SQuAD 1.1 (Rajpurkar et al., 2016) as the source dataset and five other datasets as

OOD datasets: NewsQA (Trischler et al., 2017), TriviaQA (Joshi et al., 2017), SearchQA (Dunn

et al., 2017), HotpotQA (Yang et al., 2018), and Natural Questions (Kwiatkowski et al., 2019).2

These are all extractive question answering datasets where all questions are answerable; however, they

vary widely in the nature of passages (e.g., Wikipedia, news, web snippets), questions (e.g., Jeopardy

and trivia questions), and relationship between passages and questions (e.g., whether questions are

written based on passages, or passages retrieved based on questions). We used the preprocessed data

from the MRQA 2019 shared task (Fisch et al., 2019). For HotpotQA, we focused on multi-hop

questions by selecting only “hard” examples, as defined by Yang et al. (2018). In each experiment,

two di↵erent OOD datasets are chosen as qknown and qunk. All results are averaged over all 20 such

combinations, unless otherwise specified. We sample 2,000 examples from qknown for Dcalib, and

4,000 SQuAD and 4,000 qunk examples for Dtest. We evaluate using exact match (EM) accuracy, as

defined by SQuAD (Rajpurkar et al., 2016). Additional details can be found in Appendix A.1.

QA model. For our QA model, we use the BERT-base SQuAD 1.1 model trained for 2 epochs

(Devlin et al., 2019). We train six models total: one fsrc and five fsrc+known’s, one for each OOD

dataset.

Selective prediction methods. For test-time dropout, we use K = 30 di↵erent dropout masks, as

in Dong et al. (2018). For our calibrator, we use the random forest implementation from Scikit-learn

(Pedregosa et al., 2011). We train on 1,600 SQuAD examples and 1,600 known OOD examples, and

use the remaining 400 SQuAD and 400 known OOD examples as a validation set to tune calibrator

hyperparameters via grid search. We average our results over 10 random splits of this data. When

training the calibrator only on psource, we use 3,200 SQuAD examples for training and 800 for

validation, to ensure equal dataset sizes.

3.5.2 Main results

Training a calibrator with qknown outperforms other methods. Table 3.1 compares all

methods that do not use test-time dropout. Compared to MaxProb with fsrc+known, the calibrator

has 4.3 points and 6.7 points higher coverage at 80% and 90% accuracy respectively, and 1.1 points

lower AUC.3 This demonstrates that training a calibrator is a better use of known OOD data

than training a QA model. The calibrator trained on both psource and qknown also outperforms the

2We consider these di↵erent datasets to represent di↵erent domains, hence our usage of the term “domain shift.”
395% confidence interval is [1.01, 1.69], using the paired bootstrap test with 1000 bootstrap samples.
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AUC
#

Cov @
Acc=80%

"

Cov @
Acc=90%

"
Train QA model on SQuAD
MaxProb
Calibrator (psource only)
Calibrator (psource and qknown)
Best possible

20.54
19.27
18.47
9.64

48.23
53.67
56.06
74.92

21.07
26.68
29.42
66.59

Train QA model on SQuAD +
known OOD
MaxProb
Best possible

19.61
8.83

51.75
76.80

22.76
68.26

Table 3.1: Results for methods without test-time dropout. The calibrator with access to qknown

outperforms all other methods. #: lower is better. ": higher is better.

calibrator trained on psource alone by 2.4% coverage at 80% accuracy. All methods perform far worse

than the optimal selective predictor with the given base model, though achieving this bound may

not be realistic.4

Test-time dropout improves results but is expensive. Table 3.2 shows results for methods

that use test-time dropout, as described in Section 3.4.2. The negative variance of p̂i(ŷ)’s across

dropout masks serves poorly as an estimate of confidence, but the mean performs well. The best

performance is attained by the calibrator using dropout features, which has 3.9% higher coverage at

80% accuracy than the calibrator with non-dropout features. Since test-time dropout introduces

substantial (i.e., K-fold) runtime overhead, our remaining analyses focus on methods without test-time

dropout.

The QA model has lower non-trivial accuracy on OOD data. Next, we motivate our focus

on selective prediction, as opposed to outlier detection, by showing that the QA model still gets a

non-trivial fraction of OOD examples correct. Table 3.3 shows the (non-selective) exact match scores

for all six QA models used in our experiments on all datasets. All models get around 80% accuracy

on SQuAD, and around 40% to 50% accuracy on most OOD datasets. Since OOD accuracies are

much higher than 0%, abstaining on all OOD examples would be overly conservative.5 At the same

time, since OOD accuracy is worse than in-domain accuracy, a good selective predictor should answer

more in-domain examples and fewer OOD examples. Training on 2,000 qknown examples does not

significantly help the base model extrapolate to other qunk distributions.

4As noted in Section 2.1.1, as the QA model has fixed accuracy < 100% on Dtest, it is impossible to achieve 0%
risk at 100% coverage.

5In Section A.2, we confirm that an outlier detector does not achieve good selective prediction performance.
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AUC
#

Cov @
Acc=80%

"

Cov @
Acc=90%

"
Train QA model on SQuAD
Test-time dropout (–var)
Test-time dropout (mean)
Calibrator (psource only)
Calibrator (psource and qknown)
Best possible

28.13
18.35
17.84
17.31
9.64

24.50
57.49
58.35
59.99
74.92

15.40
29.55
34.27
34.99
66.59

Train QA model on SQuAD +
known OOD
Test-time dropout (–var)
Test-time dropout (mean)
Best possible

26.67
17.72
8.83

26.74
59.60
76.80

15.95
30.40
68.26

Table 3.2: Results for methods that use test-time dropout. Here again, the calibrator with access to
qknown outperforms all other methods.

Train Data # / Test Data ! SQuAD TriviaQA HotpotQA NewsQA
Natural

Questions
SearchQA

SQuAD only 80.95 48.43 44.88 40.45 42.78 17.98
SQuAD + 2K TriviaQA 81.48 (50.50) 43.95 39.15 47.05 25.23
SQuAD + 2K HotpotQA 81.15 49.35 (53.60) 39.85 48.18 24.40
SQuAD + 2K NewsQA 81.50 50.18 42.88 (44.00) 47.08 20.40
SQuAD + 2K NaturalQuestions 81.48 51.43 44.38 40.90 (54.85) 25.95
SQuAD + 2K SearchQA 81.60 56.58 44.30 40.15 47.05 (59.80)

Table 3.3: Exact match accuracy for all six QA models on all six test QA datasets. Training on
Dcalib improves accuracy on data from the same dataset (diagonal), but generally does not improve
accuracy on data from qunk.

Results hold across di↵erent amounts of known OOD data. As shown in Figure 3.2, across

all amounts of known OOD data, using it to train and validate the calibrator (in an 80–20 split)

performs better than adding all of it to the QA training data and using MaxProb.

3.5.3 Miscalibration of MaxProb

We now show why MaxProb performs worse in our setting compared to the in-domain setting: it

is miscalibrated on out-of-domain examples. Figure 3.3a shows that MaxProb values are generally

lower for OOD examples than in-domain examples, following previously reported trends (Hendrycks

and Gimpel, 2017; Liang et al., 2018). However, the MaxProb values are still too high out-of-

domain. Figure 3.3b shows that MaxProb is not well calibrated: it is underconfident in-domain,

and overconfident out-of-domain.6 For example, for a MaxProb of 0.6, the model is about 80%

likely to get the question correct if it came from SQuAD (in-domain), and 45% likely to get the

6The in-domain underconfidence is because SQuAD (and some other datasets) provides only one answer at training
time, but multiple answers are considered correct at test time. In Appendix A.3, we show that removing multiple
answers makes MaxProb well-calibrated in-domain; it stays overconfident out-of-domain.
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Figure 3.2: Area under the risk-coverage curve as a function of how much data from qknown is
available. At all points, using data from qknown to train the calibrator is more e↵ective than using it
for QA model training.

question correct if it was OOD. When in-domain and OOD examples are mixed at test time, MaxProb

therefore does not abstain enough on the OOD examples. Figure 3.3d shows that the calibrator is

better calibrated, even though it is not trained on any unknown OOD data. In Appendix A.4, we

show that the calibrator abstains on more OOD examples than MaxProb.

Our finding that the BERT QA model is not overconfident in-domain aligns with Hendrycks

et al. (2019a), who found that pre-trained computer vision models are better calibrated than models

trained from scratch, as pre-trained models can be trained for fewer epochs. Our QA model is only

trained for two epochs, as is standard for BERT. Our findings also align with Ovadia et al. (2019),

who find that computer vision and text classification models are poorly calibrated out-of-domain

even when well-calibrated in-domain. Note that miscalibration out-of-domain does not imply poor

selective prediction on OOD data, but does imply poor selective prediction in our mixture setting.

3.5.4 Extrapolation between datasets

We next investigated how choice of qknown a↵ects generalization of the calibrator to qunk. Figure 3.4

shows the percentage reduction between MaxProb and optimal AUC achieved by the trained calibrator.

The calibrator outperforms MaxProb over all dataset combinations, with larger gains when qknown and

qunk are similar. For example, samples from TriviaQA help generalization to SearchQA and vice versa;

both use web snippets as passages. Samples from NewsQA, the only other non-Wikipedia dataset,

are also helpful for both. On the other hand, no other dataset significantly helps generalization to

HotpotQA, likely due to HotpotQA’s unique focus on multi-hop questions.
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(a) (b)

(c) (d)

Figure 3.3: MaxProb is lower on average for OOD data than in-domain data (a), but it is still
overconfident on OOD data: when plotting the true probability of correctness vs. MaxProb (b),
the OOD curve is below the y = x line, indicating MaxProb overestimates the probability that the
prediction is correct. The calibrator assigns lower confidence on OOD data (c) and has a smaller gap
between in-domain and OOD curves (d), indicating improved calibration.

3.5.5 Calibrator design decisions

Feature Ablations We determine the importance of each feature of the calibrator by removing

each of its features individually, leaving the rest. From Table 3.4, we see that the most important

features are the softmax probabilities and the passage length. Intuitively, passage length is meaningful

both because longer passages have more answer candidates, and because passage length di↵ers greatly

between di↵erent domains.

Discarded Features We also experimented with including question length and word overlap

between the passage and question as calibrator features. However, these features did not improve the

validation performance of the calibrator, as shown in Table 3.5, so we did not include them in our
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Figure 3.4: Results for di↵erent choices of qknown (y-axis) and qunk (x-axis). For each pair, we report
the percent AUC improvement of the trained calibrator over MaxProb, relative to the total possible
improvement. Datasets that use similar passages (e.g., SearchQA and TriviaQA) help each other the
most. Main diagonal elements (shaded) assume access to qunk (see Section 3.5.9).

other experiments. We hypothesize that these features may provide misleading information about a

given example, e.g., a long question in SQuAD may provide more opportunities for alignment with

the paragraph, making it more likely to be answered correctly, but a long question in HotpotQA may

contain a conjunction, which is di�cult for the SQuAD-trained model to extrapolate to.

Model For the calibrator model, we experimented using an MLP and logistic regression. Both

were slightly worse than Random Forest.

3.5.6 Error analysis

We examined calibrator errors on two pairs of qknown and qunk—one similar pair of datasets and one

dissimilar. For each, we sampled 100 errors in which the system confidently gave a wrong answer

(overconfident), and 100 errors in which the system abstained but would have gotten the question

correct if it had answered (underconfident). These were sampled from the 1000 most overconfident

or underconfident errors, respectively.

qknown = NewsQA, qunk = TriviaQA. These two datasets are from di↵erent non-Wikipedia

sources. 62% of overconfidence errors are due to the model predicting valid alternate answers, or
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AUC
#

Cov @
Acc=80%

"

Cov @
Acc=90%

"
All features
–Top softmax probability
–2nd:5th highest
softmax probabilities
–All softmax probabilities
–Context length
–Prediction length

18.47
18.61
19.11

26.41
19.79
18.6

56.06
55.46
54.29

24.57
51.73
55.67

29.42
29.27
26.67

0.08
24.24
29.30

Table 3.4: Performance of the calibrator as each of its features is removed individually, leaving the
rest. The base model’s softmax probabilities are important features, as is passage length.

AUC
#

Cov @
Acc=80%

"

Cov @
Acc=90%

"
Original features
+ Question length
+ Passage-question overlap

18.47
18.51
18.57

56.06
55.85
55.51

29.42
29.51
29.44

Table 3.5: Performance of the calibrator when adding question length and passage-question overlap
as features, in order. Although these features improve coverage at 90% accuracy, they do not improve
performance when averaged across all thresholds, as shown by the AUC.

span mismatches, as shown in Figure 3.5a—the model predicts a slightly di↵erent span than the gold

span, and should be considered correct; thus the calibrator was not truly overconfident. This points

to the need to improve QA evaluation metrics (Chen et al., 2019). 45% of underconfidence errors are

due to the passage requiring coreference resolution over long distances, including with the article

title, as shown in Figure 3.5b. Neither SQuAD nor NewsQA passages have coreference chains as

long or contain titles, so it is unsurprising that the calibrator struggles on these cases. Another 25%

of underconfidence errors were cases in which there was insu�cient evidence in the paragraph to

answer the question, as shown in Figure 3.5c (as TriviaQA was constructed via distant supervision),

so the calibrator was not incorrect to assign low confidence. 16% of all underconfidence errors also

included phrases that would not be common in SQuAD and NewsQA, such as using “said bye bye”

for “banned.”

qknown = NewsQA, qunk = HotpotQA. These two datasets are dissimilar from each other in

multiple ways. HotpotQA uses short Wikipedia passages and focuses on multi-hop questions; NewsQA

has much longer passages from news articles and does not focus on multi-hop questions. 34% of the

overconfidence errors are due to valid alternate answers or span mismatches, as shown in Figure 3.6a.

On 65% of the underconfidence errors, the correct answer was the only span in the passage that

could plausibly answer the question, as shown in Figure 3.6b, suggesting that the model arrived at
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(a) Overconfidence error. (b) Underconfidence error.

(c) Underconfidence error.

Figure 3.5: Examples of calibrator errors where qknown = NewsQA and qunk = TriviaQA. The
overconfidence error in (a) is due to span mismatch — the calibrator was not incorrect to assign
high confidence to this example. The underconfidence error in (b) is a case where the model must
associate “the tire company” with “Michelin” many words prior, without an explicit connection. The
underconfidence error in (c) is a case with insu�cient evidence in the passage — note that only two
of the breeds mentioned in the conjunction question appear in the passage.

the answer due to artifacts in HotpotQA that facilitate guesswork (Chen and Durrett, 2019; Min

et al., 2019). In these situations, the calibrator’s lack of confidence is therefore justifiable.

3.5.7 Relationship with Unanswerable Questions

We now study the relationship between selective prediction and identifying unanswerable questions.

Unanswerable questions do not aid selective prediction. We trained a QA model on SQuAD

2.0 (Rajpurkar et al., 2018), which augments SQuAD 1.1 with unanswerable questions. Our trained

calibrator with this model gets 18.38 AUC, which is very close to the 18.47 for the model trained on

SQuAD 1.1 alone. MaxProb also performed similarly with the SQuAD 2.0 model (20.81 AUC) and

SQuAD 1.1 model (20.54 AUC).

Selective prediction methods do not identify unanswerable questions. For both MaxProb

and our calibrator, we pick a threshold �0 2 R and predict that a question is unanswerable if the
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(a) Overconfidence error. (b) Underconfidence error.

Figure 3.6: Examples of calibrator errors where qknown = NewsQA and qunk = HotpotQA. The
overconfidence error in (a) is due to span mismatch — the calibrator was not incorrect to assign
high confidence to this example. The underconfidence error in (b) is a case where the question
asks for a length, and the passage contains only one length, making it possible that the model used
type-matching to answer the question, rather than multi-hop reasoning through the bridge entity,
“St. John’s river”.

confidence c < �0. We choose �0 to maximize SQuAD 2.0 EM score. Both methods perform poorly:

the calibrator (averaged over five choices of qknown) achieves 54.0 EM, while MaxProb achieves 53.1

EM.7 These results only weakly outperform the majority baseline of 48.9 EM.

Taken together, these results indicate that identifying unanswerable questions is a very di↵erent

task from knowing when to abstain under distribution shift. Our setting focuses on test data that

is dissimilar to the training data, but on which the original QA model can still correctly answer a

non-trivial fraction of examples. In contrast, unanswerable questions in SQuAD 2.0 look very similar

to answerable questions, but a model trained on SQuAD 1.1 gets all of them wrong.

3.5.8 Changing ratio of in-domain to OOD

Until now, we used ↵ = 1
2 both for Dtest and training the calibrator. Now we vary ↵ for both, ranging

from using only SQuAD to only OOD data (sampled from qknown for Dcalib and from qunk for Dtest).

Figure 3.7 shows the di↵erence in AUC between the trained calibrator and MaxProb. At both

ends of the graph, the di↵erence is close to 0, showing that MaxProb performs well in homogeneous

settings. However, when the two data sources are mixed, the calibrator outperforms MaxProb

significantly. This further supports our claim that MaxProb performs poorly in mixed settings.

3.5.9 Allowing access to qunk

We note that our findings do not hold in the alternate setting where we have access to samples

from qunk (instead of qknown). Training the QA model with this OOD data and using MaxProb

7We evaluate on 4000 questions randomly sampled from the SQuAD 2.0 development set.
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Figure 3.7: Di↵erence in AUC between calibrator and MaxProb, as a function of how much of Dtest

comes from psource (i.e., SQuAD) instead of qunk, averaged over 5 OOD datasets. The calibrator
outperforms MaxProb most when Dtest is a mixture of psource and qunk.

achieves average AUC of 16.35, whereas training a calibrator achieves 17.87; unsurprisingly, training

on examples similar to the test data is helpful. We do not focus on this setting, as our goal is to

build selective QA models for unknown distributions.



Chapter 4

Conclusion

4.1 Summary

We propose the setting of selective question answering under domain shift, in which systems must

know when to abstain on a mixture of in-domain and unknown out-of-domain (OOD) examples.

Our setting combines two important goals for real-world systems: knowing when to abstain, and

handling distribution shift at test time. We show that models are overconfident on OOD examples,

leading to poor performance in the our setting, but training a calibrator using separate OOD data

can help correct for this problem. While we focus on question answering, our framework is general

and extends to any prediction task for which graceful handling of OOD inputs is necessary.

Across many tasks, NLP models struggle on OOD inputs. Models trained on standard natural

language inference datasets (Bowman et al., 2015) generalize poorly to other distributions (Thorne

et al., 2018; Naik et al., 2018). Achieving high accuracy on OOD data may not even be possible if

the test data requires abilities that are not learnable from the training data (Geiger et al., 2019).

Adversarially chosen ungrammatical text can also cause catastrophic errors (Wallace et al., 2019;

Cheng et al., 2020). In all these cases, a more intelligent model would recognize that it should abstain

on these inputs.

Our work provides a framework to study how models can recognize when they are well-equipped

to provide an answer in both familiar and unfamiliar situations.

4.2 Future Directions

The work in this thesis is primarily based on Kamath et al. (2020). There are several interesting

directions in which the ideas of our work can be extended.

30
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Applying to other tasks. The most straightforward extension would be to apply our approach

to other tasks. Our framework applies to any model that returns a probability; we could determine

whether our findings hold for other tasks where OOD generalization is very important, and abstaining

is highly preferable to returning erroneous outputs — such as other high-stakes NLP tasks like

drawing inferences from medical reports, or even tasks in non-NLP fields, such as medical image

interpretation.

Using probes to predict when models can generalize. In this work, we take only the top 5

probabilities from the final softmax layer of the BERT model to help the calibrator guess whether

or not the model can safely generalize to a new example, in addition to a small number of features

based on the data itself. In the future, we plan to determine whether there is additional signal that

we can gain from the internal representations of the model. Prior work (Tenney et al., 2019; Hewitt

and Manning, 2019) has shown that linguistic information such as POS tags, parse trees, coreference

chains, etc. can be extracted from BERT representations using probes. We plan to determine whether

there is a correlation between the per-example performance of the model representations on these

“intermediate tasks” as measured by these probes, and corresponding per-example performance on

the “end task” for which BERT was finetuned, e.g. Natural Language Inference. Primarily, we will

investigate whether we can reliably predict when our model can safely generalize to an OOD example.

Supervision for the probes will come from a package such as Stanza (Qi et al., 2020). As the

Stanza models are trained on a more diverse dataset than our model, we believe they will generalize

well to OOD data, giving us a good approximation of probing task error on OOD data. We will

determine whether this will enable us to estimate OOD error on the end task without using labeled

OOD data.

Leveraging work from other fields to predict when models can generalize. The above

approach uses probes to find signal about safe generalization in the model representations. However,

there are other ways to draw inferences about new inputs from model representations that have

been explored in other fields, and from which we may draw insights. Papernot and McDaniel (2018)

compare model representations at test time to those at training time to identify outliers. There is

also a significant body of work in the domain of safe exploration for reinforcement learning models

(Dalal et al., 2018; Lipton et al., 2016; Richter and Roy, 2017; Achiam and Amodei, 2019; Kahn et al.,

2017; Fu et al., 2017; Lee et al., 2019) to identify if a transition leads to an “unsafe” state. It would

be an interesting challenge to leverage these techniques to summarize the extremely high-dimensional

representation space such that it retains the signal desired, in a way that would capture the model’s

ability to generalize to new domains, and not only perform outlier detection.

Improving model performance In this work, we do not change the underlying model; we instead

attempt to predict when it will err, and abstain accordingly. Going one step further, we could
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consider making model updates at test time in a way that would make the model more likely to

get OOD examples correct, while not sacrificing in-domain performance. Self-training (Chapelle

et al., 2006) has been shown to improve OOD accuracy in gradual domain shift (Kumar et al.,

2020), and unlabeled OOD data has been leveraged using self-supervision to improve generalization

(Gururangan et al., 2020). An additional challenge that may improve performance could be to

(perhaps softly) identify domains without requiring labels, which could be used to enable features to

have varying weights across domains: for example, this might enable a sentiment classifier to weigh

“funny” positively for movie reviews and negatively for restaurant reviews.

4.3 Final thoughts

NLP systems in production inevitably face domain shift: even if inputs are restricted to a single

domain, domains change over time (Kramer, 1988). Systems in deployment must therefore be

prepared to handle a mixture of familiar and unfamiliar inputs. However, systems trained on finite

data cannot generalize to all OOD inputs (Geiger et al., 2019). Thus, recognizing when to abstain

is valuable. This makes selective prediction under domain shift vital, particularly in business- and

safety-critical applications, where abstaining is highly preferable to producing an incorrect output.

Our work provides a framework to study how models can more judiciously abstain in these challenging

environments.

As discussed above, there are several ways to extend our work, with the overarching goal of

achieving safe generalization. In closing, we emphasize the need to evaluate NLP systems in the

practical setting of a mixture of in-domain and OOD inputs, to ensure the challenges we tackle in

research via benchmark datasets translate to improved natural language understanding in the wild.
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Appendix for Chapter 3

A.1 Dataset Sources

The OOD data used in calibrator training and validation was sampled from MRQA training data,

and the SQuAD data for the same was sampled from MRQA validation data, to prevent train/test

mismatch for the QA model (Fisch et al., 2019). The test data was sampled from a disjoint subset of

the MRQA validation data.

As mentioned in Section 3.5.1, only “hard” examples were selected from HotpotQA, as defined by

Yang et al. (2018). This was done in order to focus on multi-hop questions. Additionally, this was

done to prevent a train/test mismatch, as the validation data for this dataset consists of only “hard”

questions. Without this filtering, the accuracy of the model trained on SQuAD 1.1 on the HotpotQA

training data is 59.99 and accuracy on the HotpotQA validation data is 44.80, a significant mismatch.

A.2 Outlier Detection for Selective Prediction

In this section, we study whether outlier detection can be used to perform selective prediction. We

train an outlier detector to detect whether or not a given input came from the in-domain dataset

(i.e., SQuAD) or is out-of-domain, and use its probability of an example being in-domain for selective

prediction. The outlier detection model, training data (a mixture of psource and qknown), and features

are the same as those of the calibrator. We find that this method does poorly, achieving an AUC of

24.23, Coverage at 80% Accuracy of 37.91%, and Coverage at 90% Accuracy of 14.26%. This shows

that, as discussed in Section 3.2 and Section 3.5.2, this approach is unable to correctly identify the

OOD examples that the QA model would get correct.

33
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(a) (b)

Figure A.1: When considering only one answer option as correct, MaxProb is well-calibrated in-
domain, but is still overconfident out-of-domain (Figure A.1a). Meanwhile, the calibrator is almost
perfectly calibrated on both in-domain and out-of-domain examples (Figure A.1b).

A.3 Underconfidence of MaxProb on SQuAD

As noted in Section 3.5.3, MaxProb is underconfident on SQuAD examples due to the additional

correct answer options given at test time but not at train time. When the test time evaluation is

restricted to allow only one correct answer, we find that MaxProb is well-calibrated on SQuAD

examples (Figure A.1a). The calibration of the calibrator improves as well (Figure A.1b). However,

we do not retain this restriction for the experiments, as it diverges from standard practice on SQuAD,

and EM over multiple spans is a better evaluation metric since there are often multiple answer spans

that are equally correct. Evidence of this can also be seen in Section 3.5.6, where a significant portion

of the “errors” were span mismatches, which would be largely resolved if other datasets had multiple

spans like SQuAD does.

A.4 Accuracy and Coverage per Domain

Table 3.1 in Section 3.5.2 shows the coverage of MaxProb and the calibrator over the mixed dataset

Dtest while maintaining 80% accuracy and 90% accuracy. In Table A.1, we report the fraction of

these answered questions that are in-domain or OOD. We also show the accuracy of the QA model

on each portion.

Our analysis in Section 3.5.3 indicated that MaxProb was overconfident on OOD examples,

which we expect would make it answer too many OOD questions and too few in-domain questions.

Indeed, at 80% accuracy, 62% of the examples MaxProb answers are in-domain, compared to 68%

for the calibrator. This demonstrates that the calibrator improves over MaxProb by answering more

in-domain questions, which it can do because it is less overconfident on the OOD questions.
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MaxProb
Accuracy

MaxProb
Coverage

Calibrator
Accuracy

Calibrator
Coverage

At 80% Accuracy
in-domain 92.45 61.59 89.09 67.57
OOD 58.00 38.41 59.55 32.43

At 90% Accuracy
in-domain 97.42 67.85 94.35 78.72
OOD 71.20 32.15 72.30 21.28

Table A.1: Per-domain accuracy and coverage values of MaxProb and the calibrator (psource and
qknown) at 80% and 90% Accuracy on Dtest.
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Real-world examples calling for

abstention

(a) (b)

Figure B.1: Sometimes, it really is better to abstain. Google results from (a) 5/10/2020 and (b)
5/18/2020.
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